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Abstract

Analytical methods in optimization of elastic structures are often problematic due to the high order of the governing
equations. It is therefore useful to try various numerical schemes in parallel to better understand the optimized object
behavior. The paper describes the theoretical grounds and technical features that had to be introduced for effective
implementation of a regular genetic algorithm (GA) to the shape optimization problems in planar elasticity. These
features concern the fitness calculation and imposing specific geometric constraints as a way to drastically reduce the
computational efforts. Finally we demonstrate a successful GA application for numerical shape optimization of a hole
or rigid inclusion in a plate, arbitrarily loaded at infinity. Not only the known results have been reliably reproduced for
the energy minimizing holes, but this approach has allowed us to extend the findings for the “worst” (energy maxi-
mizing) inclusions as well. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Plane elasticity problem; Shape optimization; Effective energy; Kolosov—Muskhelishvili potentials; Extremal elastic
structures; Equi-stress inclusions; Genetic algorithm

1. Introduction

Composites are becoming the material of choice in engineering today. Their greatest advantage is that
they provide a designer with the ability of tailoring the effective material properties to a given external
loading. This raises a number of recurring problems in elasticity, particularly the optimization of two-phase
structures with respect to their energy stored at given average strains. The minimization of the strain energy
leads to more rigid structures, with deflections and stresses considerably reduced.

The infinitely extended plane solid containing a single 1-connected inclusion is an often used scheme to
model various problems of linear elasticity. This inclusion serves as an elementary discontinuity to disturb a
homogeneous stress tensor gy = (6., 6% ,6° ) applied to the solid at infinity. Assuming additionally a
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perfect bonding along the phase interface, its shape remains the only factor controlling the stress distri-
bution inside and around the inclusion. When the induced stress field provides the global energy minimum,
the inclusion is referred to as energy minimizing or optimal for a taken loading. Concurrently, the opposite
case of energy-maximizing inclusions is also of much interest, for together these extrema exactly bound the
potential variety of the structures. Of special importance are the limiting structures when the inclusion has
an infinite or zero rigidity.

Shape optimization is therefore a principal topic in structural design. For the 2D case, this problem was
attacked mainly by analytical methods, such as the Kolosov—Muskhelishvily (KM) potentials (Muskhe-
lishvili, 1975) combined with conformal mapping (see Vigdergauz, 1989; Haslinger and Dvorak, 1995, and
references therein). In this way, an elliptic inclusion was shown to ensure the global energy minimum as
defined by the known Gibiansky and Cherkaev (1986) analytical bounds. The ellipse orientation and
eccentricity depend on the tensor gy, which should be sufficiently close to a hydrostatic loading (Vigdergauz,
1989, the exact formulation is given in Section 3). Additionally, such optimal inclusions exhibit an in-
teresting local property of providing a uniform stress distribution along and inside the interface (the
equi-stress boundaries, Vigdergauz, 1989). In the opposite case of dominating shear stresses, the situation
is quite different. As it has been recently proved by Allaire and Aubry (1999) no non-degenerated inclu-
sion shape can saturate the Gibiansky—Cherkaev bounds. However, a specific traction-free hole shape
attaining a stationary energy value was semi-analytically found by Vigdergauz and Cherkaev (1986).
Though distant from the global minimum, these sub-optimal shapes are important for understanding the
optimization problem. Geometrically, they appeared to be very close to a rectangular with corners and
slightly rounded sides, whose ratio depends on the far load. Moreover, the above-mention non-zero
tangential stress has a constant absolute value almost everywhere on the contours except in the corners.
When passing them the stress changes its sign discontinuously because of a discontinuous change of
a tangent unit vector. This local property is referred to as M-(modular) equi-stressness (Vigdergauz and
Cherkaev, 1986).

For further tackling the shape optimization problem, it seems reasonable to employ numerical methods
in parallel.

Computationally, any optimization process involves two main ingredients: the solution of given
boundary value problem (a direct problem) which has to be repeated many times, and a minimization
scheme (an inverse or shape optimization problem). Here, the direct problem is governed by the high-order
equations of elasticity, which must be handled numerically in a special way to provide a compromise be-
tween accuracy and efficiency.The associated inverse problem is known to be ill-posed, namely large
changes of the contour can correspond to small changes in the stored energy. By this reason, traditional
gradient-base optimization methods would require enormous calculations of the local stresses at each
control point in contrast to the objective energy function easily evaluated by averaging the stress field. This
discrepancy is especially pronounced for angular points that may drastically improve the performance of a
candidate optimal shape as with the M-equi-stressness. Therefore, a more promising non-gradient alter-
native should be used when the search starts from different initial approximations, and proceeds according
to some heuristic procedure.

In the attempt to overcome prohibitive numerical complexity of the problem at hand, we have applied
here a genetic algorithm (GA) advanced by Goldberg (1989). The idea is simple: starting with a relatively
small set of initial geometries, a number of structures that derive their properties from two of these indi-
viduals are generated. From this “population”, the energetically “most fit” structures are chosen to replace
their “parents’. Repeating this process leads, as a rule, to extremal-energy structures.

GAs belong to the group of probabilistic searching methods that have a sufficient capability of locating
the global optimum in the multidimensional searching space discarding all existing local optima. The ro-
bustness of the method, its ability to deal directly with optimization variables without any gradients and
usage of an encoded binary representation of the modifiable variables are promising and advantageous.
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GAs have been implemented to problems in many fields, but there have been only few successful ap-
plications to the full-scale theory of elasticity.

One of the difficulties here is that the evaluation of the energy by solving the direct problem is computer
time consuming, especially when more accurate models are used. Our contribution to remedy the situation
is two-fold. First, a new fast scheme of fitness evaluation is performed to improve the GA computational
efficiency. This scheme may be easily incorporated in various numerical codes to solve other 2D elasticity
problems as well. Second, we propose an effective self-adjusting encoding scheme to accomplish compu-
tational savings. Together with some other numerical tricks, this prevents us from calculating the energies
of many thousands of non-competitive structures.

Further, due to its heuristic nature, one cannot apply the GA to the considered problem automatically.
A reliable assessment of the numerical results may be only provided by comprehensive theoretical analysis
in combination with the common sense considerations and even with the programming experience. With
this in view, no wander that a high proportion of the paper is devoted to the required analytical prelimi-
naries.

It should be noted however that no innovations are advanced in the genetic algorithm itself. The or-
dinary approach with integer genes and 1-point crossover turned out to be sufficient for our purposes. The
real novelty is a fresh combination of the GA with comprehensive analytical study of the problem. By this
reason, the paper is primarily intended to the elasticity rather than to the GA community.

In numerical experiments, our main attention has been paid to the case of pure shearing which plays
significant role in the continual description of the mechanical properties of materials. In doing so, the GA
appeared to be much more effective for holes and rigid inclusions than for elastic inhomogeneities. The
closer the shear moduli of both materials are to each other, the less reliable the fitness computation.

The approach adopted here may serve as the first step in tuning the GA parameters and developing a
numerical procedure that is appropriate for more general doubly periodic optimization problems. Such a
procedure is currently under investigation.

The paper is organized as follows. In Section 2, we display some basic formulae in complex variable
method of 2D elasticity. Section 3 states the optimization problem, while Section 4 describes the solution
strategy based on the GA. In Section 5, we present not-too-standard encoding technique that automatically
incorporate some geometrical constraint specifically pre-imposed on the moving interface to throw away
most of the unpromising candidates. In Section 6, we discuss some computational issues related to the
proposed scheme. The specific features of the optimization process are illustrated in Section 7 by a set of
numerical examples. Comparison with results obtained by several different methods (when available) is also
made to validate the method and demonstrate its performance. Finally, we make some concluding remarks
in Section 8.

2. Governing equations of planar elasticity

Consider a thin infinite elastic plate containing a single non-identical inclusion with a closed boundary L.
Locate a plate in the plane E of a complex variable z = x + iy. The curve L divides the plane in two parts S,
and S,, E = S| U Sy, each occupied by its own linearly isotropic and homogeneous material with given bulk
and shear moduli X, p;, j = 1,2.

Let the plate be remotely loaded by a uniform stress field oy with the components ¢° = P, o-fy = Qp and
ogy = 0 in the Cartesian coordinate system XOY. The stress state in £ can be described using two pairs of
KM potentials ¢;(z), y/;(z) (Muskhelishvili, 1975) which are complex-valued functions analytic respectively
in the subdomains S}, j = 1,2. These potentials are related to the stress tensor ¢ = {0y, 6,0, } and to the
displacements u,(z) + iu,(z) at an arbitrary point in £ by
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Tr{o(2)} = 0u(2) + 0,(2) =4Re@)(z); z€S; j=1,2
Dev{a(2)} = 0,,(2) — gul2) = 2Re|20](2) + /(2)] 2.1)

0 (2) = Im [207(2) + (2)|

2, (ux(2) + iuy(2)) = 40,(2) — z00(z) — W% zeS; j=12 (2.2)

Here 4, = 1+ 2u;/K;, j = 1,2 is the Kolosov dimensionless constant (Muskhelishvili, 1975).

For further manipulations it is significant that the global part Tr{o(z)} of the local stress tensor turns
out to be independent of the second potential ¢,(z) as seen from Eq. (2.1). Assuming perfect bonding at the
matrix-inclusion interface, the potentials are linked to L through the continuity conditions (Muskhelishvili,
1975)

@1(t) + 1o\ (1) + (1) = @a (1) + 15 (1) + Y, (2); tE€L (2.3)

1 (2101(0) = 16070) =91 0) = iy (2a(t) — 195(0) = ) (24)

For definiteness, let the matrix related quantities be indexed with j = 2. Then the functions ¢,(z), ¥,(z)
satisfy the asymptotic requirements at infinity (Muskhelishvili, 1975)

022) = B2+ O(J217"); o) = Lz +O(Jz171); Jz = o
4B, = Ry + Qo; 2 =00 — P

(2.5)

In parallel with (x, y) the polar coordinates (r, 0) will also be used, when needed. By the well-known (, 0) to
(x,y) transformation of the displacements and stresses (Muskhelishvili, 1975) we combine Egs. (2.1), (2.2)
and (2.5) to arrive at

0,(z) =2By, —Iyc0820+0,; 0.(z) =I>sin20+ g,

2uou,(z) = |2|[(Aa — 1)By = T’y c08 20] + 1,3 2pyup(z) = |z| T2 sin 20 + uy ; |z| = o0 (2:6)
where the minus superscript denotes the items vanishing at infinity.

Identities (2.4)—(2.5) form the boundary value problem in the KM potentials ¢,(z), ¥/;(z), j = 1,2 which
solves the medium stress state through Egs. (2.1) and (2.2). Given far field Eq. (2.5), this problem is uni-
quely solvable for any fixed inclusion shape L (Muskhelishvili, 1975).

Of significant importance is also the attendant problem to find a finite perturbation AW of the infinite
strain energy caused by the inclusion in the unbounded plate E. This quantity may be expressed (Mus-
khelishvili, 1975) as the limit of the convergent contour integral

2n
QAW = / (Gt + Gty — oty — G419 RAO (2.7)
0

taken over a circle with the radius R tending to infinity.
For further manipulation, we introduce the expansions (Muskhelishvili, 1975)

01(2) = a; Y2)=) by zeS+L (2.8)
k=0 k=0
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e e 2.9
b,(z) = E az® W(z2) = E bz F zeS +L (29)
=1 =1

that are valid for the KM potentials with the minimal smoothness requirements on the contour L. Note,
that the constant terms with & = 0 are included in the expansions for ¢, ;. This choice is convenient but
arbitrary because they correspond to the stress-free rigid body motion. The coefficients @, and b,
k=0,+1,£2,..., are given by the kth residues

1 1

=5 i g = 3 : —k=1 | — : j = i .
ak—zni/L(P,(t)t d; by 2ni/an}(t)t dt  j=1 for k>0; j=2 otherwise (2.10)

For convenient reference we display here the following identities (Muskhelishvili, 1977) that also hold
for any closed curve L traversed in a counter-clockwise direction

nq. ) 2m, n=-—1, s A
ltm{a n=0 142,43, .. A}mfzm (2.11)

Here, ¢; stands for the inclusion area.
For dimensional reasons, the first coefficients ¢, b_; in Eq. (2.9) are proportional to ¢; (Muskhelishvili,
1977)

a_; = o_ci; by =P (2.12)

where the dimensionless quantities «_;, f_; depend on the interface shape and on the parameters involved

0_1 = (x—l(L7P07QO>K17:u17K27:u2)
ﬁ—l = ﬁ—l(LaPOaQ%KlnulaKZmuZ)

With Egs. (2.6), (2.8) and (2.3), substituting Egs. (2.8) and (2.9) into Eq. (2.7) yields after some algebra

1 1
AW = 871[21—‘20(,1 +Bzﬁ71] (I?—‘r'u—)(ﬁ (213)
2 2

At given phase moduli and load, the contour shape L remains the only factor controlling the stress dis-
tribution in the structure and hence its strain energy through o and _;. Generally, these two unknowns
are extracted as a by-product from the full-scale solution to the initial boundary problems (2.3) and (2.4)
coupled with the asymptotics (2.5). In some instances, however, specific results may be reached by lesser
efforts as shown in the next Section.

Remark. Relation (2.13) involves only the first terms of the expansion (2.9). It is not due to the single-
inclusion approximation of the structure as might appear at first sight. A doubly periodic lattice of in-
teracting inclusions yields the similar result (Vigdergauz, 1999) with the only difference that the powers of z
are replaced by the Weierstrassian zeta-function and its derivatives to incorporate the translation properties
of the KM potentials. The true reason is the averaging nature of the energy evaluation when the higher
terms, though affecting o, f_; through the contact conditions (2.3) and (2.4) make no direct contribution
in AW.
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3. Problem formulation and analytical backgrounds

We are now in a position to address the optimization problem of finding the inclusion shape L that

minimizes the energy perturbation

AW — min (3.1)

{L}

in relation to the parameters involved. For fixed far field gy, the minimum of AW obviously corresponds to
a plate of maximum stiffness. Originally considered by Prager (1968), this problem was intensively studied
for three last decades. To make the paper more self-contained, we summarize here some relevant known
results together with new identities (3.15) and (3.16) especially derived for our purposes. Though lengthy,
this Section provides a comprehensive theoretical basis required for reliable assessment of the numerical
data obtained by the GA.

The problem is obviously hard to tackle by analytical methods. The main difficulty is that the sub-
problems of finding the pairs ¢, (z), ¥, (z) and ¢,(z), ¥,(z) are closely intertwined by the contact conditions
(2.3) and (2.4) and must, therefore, be treated simultancously. However, on some interval of external loads
an explicit solution may be found by application of the equi-stress concept (Vigdergauz, 1989), when the
boundary sought L is so designed as to reduce the phase interaction to uniform normal stresses:
oty =const. = py; o(1)=0; =12 tel (3.2)

n nt

where (n,7) are the orthogonal curvilinear coordinates on L.

This makes it possible to decompose the initial problem of elasticity (2.3) and (2.4) into two less com-
plicated sub-problems for each phase individually.

In doing so, we start with the prerequisite (3.2) and routinely develop the identities (2.1), (2.3) and (2.4)
to arrive at (Vigdergauz, 1989)

20/(2) =po; Yi(2) =0; z€S (33)

0y(z) =Byz; z €S, (3.4)
and

U,(t) =Hyt; teL (3.5)

where the real constants py, H, are defined by

_ 2m(At1) , (o —1) — (4 — 1)

=T ) B, B, (3.6)
2+ (= 1) 2 + pp (21 — 1)

With Eq. (2.1) it follows easily from Eq. (3.3) that the elastic field in the inclusion is homogeneous and pure

spherical for any inclusion shape

Po szpo—szzz'u1

0u(2) = 0y(2) =, 0y(2)=0;  zeS,
Next, substituting Egs. (3.3) and (3.4) into expansions (2.8) and (2.9) yields
2a1 = py; ar =0; k#1; by=0; k=0,1,2,... (3.7)

The remaining identity (3.5) is then coupled with the second asymptotics (2.5) to pose the inverse boundary
problem in finding a closed smooth curve on which the holomorphic function ,(z) takes the prescribed
values.

This problem was shown solvable if and only if the parameters involved obey the inequality (Vigdergauz,
1989)



S. Vigdergauz | International Journal of Solids and Structures 38 (2001) 6851-6867 6857

o<t o= (3.8)
H,
or, in equivalent terms
‘DCVO'O _ Po— 0o ‘ﬂz(il_l)_ﬂl(AZ_l) (3 9)
TI'G() P() —+ Q() = ‘uz()ul — 1) —+ 2/,41 )

When this is the case, the contour sought is an ellipse of eccentricity o aligned with the far field eigen-
directions.

The inequality (3.9) implies that the deviatoric part I'; of the remote field must be sufficiently small when
compared to its spherical part B,.

Now, the asymptotic coefficients «_;, f_; entering in Eq. (2.13) may be found explicitly to express the
energy increment AW associated with equi-stress interfaces. With Egs. (2.10) and (2.11) integration of Eq.
(3.5) over L gives

poy=n""H, (3.10)
while «_; = 0 in conformity with Eq. (3.7). Then recalling Eq. (3.6) we have
1 1 (e =1) — (b = 1) 5 < 1 1 >
AW = 8B,H. ——|——>c = Trooy| —+— |c 3.11
w <K2 Hy 1 2py + pp (21 — 1) ’ Ky 1 ( )

When p, = y,, this expression coincides with the global lower bound obtained by Gibiansky and Cherkaev
(1986) thus proving the optimality of the equi-stress boundaries. In the opposite case of u, < g, the optimal
problem formulation needs be changed so as that the remote strain tensor ¢ is given instead of gy. Then, the
equi-stress inclusions can be again proved optimal providing the largest possible compliance of the
structure.

As a function of the elastic moduli, the allowed field anisotropy (3.9) ranges from all round compression
(Py = Qo) up to a uniaxial loading when only either of two principal stresses differs from zero:

Devoy <1

0<
‘ Troy

(3.12)

Here, the upper bound is reached in the limiting case of a hole (u; = 0) or rigid inclusion (¢, = c0). In such
a situation, a rectilinear inhomogeneity oriented along the external loading really provides the optimal
energy increment AW = 0 because it brings no perturbation to the uniaxial external field.

Outside the range (3.9), the optimization problem (3.1) becomes much worse for the equi-stress principle
is no longer applicable. As mentioned in Introduction, the only sub-optimal hole shape known thus far has
a number of angular points. They permit the tangential stress aggy to reverse its sign while remaining
constant in magnitude (M-equi-stress contours, Vigdergauz and Cherkaev, 1986)

|ogo(t)| = const.; t€L (3.13)

Unlike Eq. (3.2), the prerequisite Eq. (3.13) admits no analytical solution to the problem Eq. (3.1). By
conformal mapping the numerical results were obtained by Vigdergauz and Cherkaev (1986) and more fully
by Cherkaev et al. (1998). However, the energy increment AW turned out to be significantly higher than the
global minimum

1 1
AW = (0 — B[ — + — 14
=@+ Je (3.14)
derived by Gibiansky and Cherkaev (1986) for a structure with one hyper-compliant phase (¢; = 0). Re-
cently it has been proved by Allaire and Aubry (1999) that no simple-connected hole may saturate the
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bound (3.14). But here the question arises of whether the M-equi-stress hole shape parallels (3.14) more
closely than any other non-degenerated curve does. Using the GA numerical procedure we answer affir-
mative (Section 7).

Surprisingly, the key relation (3.5) admits a closed-form solution for the stresses induced by an elliptic
inclusion in any remote field Q, P = ¢Q, —oo < ¢ < oo (Vigdergauz, 1989). In order to save room, we display
here only the resultant expression for the energy increment when u;, = 0

200B-T)+[(1+8)B+T)(1-0)B
B 4(5° - 1)

1 1
AW ( —|——>c1 B=P+Q; '=Q0-P

K> Hy
Again, J denotes the ellipse eccentricity.

Negative values of the parameter ¢ correspond to the shear-type remote loading when the principal
stresses P, Q have the opposite signs. To be more specific we put —1<¢<0 and hence |[P|<|Q| or
equivalently |B| < |I'|. Then, as a function of 0, the energy takes the minimum value

. 2I? — B? 1 1
at the point
o= |B/T|<1 (3.16)

Remark. When compared to (3.8) the last relation implies that the elliptic inclusion which provides the
optimum (3.11) for the bulk-type remote loading Py, Q,, PyQo = 0 is likewise optimal for its anisotropic
complement Py, —Qy, PyOy < 0. Of course, the geometrically independent and thus global estimate (3.11) is
distinguished from the minimum (3.15) locally taken over all possible ellipses.

Relations (3.14) and (3.15) form a two-sided bound on the energy minimum over all non-degenerated
holes. They merge in the above-mentioned limiting case of the uniaxial loading (¢ = 0). As is shown nu-
merically in Section 7, the smallest possible values of AW fall rather closely to the upper bound (3.15).

To gain a better understanding of the phase interplay in the optimization process, it is also desirable to
identify the “worst” inclusion shapes that provide a maximum value of AWW. Not considered before they
may be found by the GA with equal ease. In doing so non-concave curves alone are studied to weed out
star-shaped inclusions with many needles that store an arbitrary large energy.

4. The genetic algorithm outline

GAs are adaptive search strategies inspired by Darwin’s theory of evolution. They mimic the mechanism
of natural evolution, hereditary and survival of the fittest. Each potential solution is discretely encoded in a
data string. A population of such individuals is initially created at random. Then pairs of individuals cross
over at a random point of the string to produce a descendant for the next generation. A mutation process is
also used to randomly modify the genetic structure of some members of each new generation. The prob-
ability of an individual reproducing is proportional to the fitness of solution it presents. Consequently, the
quality of the solutions in successive generations improves ‘“‘automatically” keeping only the fittest indi-
viduals from the past generation in subsequent populations.

The process is terminated when an acceptable or optimum solution is found, or after some fixed com-
puting time limit. This iterative scheme is appropriate for problems that require optimization with respect
to some computable criterion. Mathematically, GAs are not always well based, but this heuristic technique
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has shown its efficiency in a number of fields including elasticity (see, for instance Schoenauer et al., 1997
and references therein).

5. Design variables and boundary representation

In conformity with Egs. (2.12) and (2.13) the normalized fitness of individuals assumes the form

F:2(1 q)(4 1)a,1+(1+q)b,1; q:&; 00 £ 0 (5.1)
c Qo

Numerically, the optimal inclusion shape depends on the discrete boundary representation of an admissible
interface through a finite number of the design variables. Due to the adopted symmetry, they are taken only
in the first quadrant 0 < 0 < /2 of the plane. Further, the problem is scale-independent so we may fixed the
contour at the point zy = 1 to prevent shrinkage. The remaining design variables are radial coordinates of
M control points z,, = r,exp (imm/2M), m = 1,2,3, ..., M, equally spaced on the irreducible portion of L.
Their proper representation in the search space is greatly important for the GA to be successfully employed
in the structural optimization.

Here, the variables are encoded using a discrete n-bits procedure as exemplified in Fig. 1 for n = 8.
Namely, the radius r,, is approximated only by 2" values in the continuous search space [r{™n); pma)] For
example, the binary string 10010011 (Fig. 1) returns the mth control point to the decimal position
Dy =1x2T40%2040%25+1%2*+ 0523+ 0522+ 1%2! +1x2°=147 € [0;2" — 1] so that

min 147 max min
A >+§(,,,<na>_,,’<n ) (5.2)

Py = rr(’;nin) + (max) _ r’(nmin)) _

m
2n _ l ( m
The candidate representation consists in concatenating all M variables to form one long string or chro-
mosome. The inverse decoding process returns decimal values of the radii that are necessary to calculate the
fitness F.

Early in the process, the GA searches for the optimum in an undirected way and thus spends too much
time to estimate obviously unpromising candidates. To keep the GA from generating such chromosomes we
use the intuitive consideration by which the optimal contour may not be concave. This assumption, while
not proved mathematically, is justified for all solutions known so far. Another reasoning suggests that the
larger of two stresses Py, Oy should elongate the contour in its own direction. For definiteness, let this be the
y-axis and thereby |P| < |Q| or, equivalently, |¢| < 1. With the fixed point zo = 1, the contour then contains
a unit rthombus (1,1, —1,—i) at least. Both constraints are incorporated into the encoding procedure by
specially defining the intervals [#{™"; )] in the following way. As is shown in Fig. 2, the first design
parameter | varies between the radial coordinates of two points at which the current ray meets the side AB
of the rhombus and the perpendicular 4C to the x-axis. Each successive control variable ,,, m = 2,3,... .M

Gene for the m-th control point

S [1]ofoft]ofofr[1]§
— 1

S

0 1 2 3 147 148 149 255
bt 1 . S S N
GA—node

Decimal space for each control point

Fig. 1. Shape encoding procedure.
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Y

| c

—X

Fig. 2. Step-by-step scheme of self-adjusting convexity.

is bounded on the corresponding ray by intersections with two specific lines. The first line DB (see Fig. 2)
goes through the preceding control point z,,_; and the corner B to keep the contour from meeting with the
rhombus. Extending the previous segment z,,_;, z,,_» we draw the second constraint line DE that provides
non-concavity of the contour at the current point z,. Each interval [/ pmaV] p =2 3 . M thus

depends on randomization of all the preceding points. Though not quite straightforward, this chain scheme
effectively restricts the analysis to a much smaller set of opportunities.

6. Computational preliminaries

As already noted, only the first terms a1, b_; of the expansions (2.9) appear in the energy criterion
(2.13). However, they may not be found independently of the other coefficients a, b;, k = 0,1,+£2, ... which
are intertwined by the contact conditions on L. Therefore, the fitness evaluation of each member in the
genetic population must be performed by solving the full-scale boundary value problem (2.3) and (2.4).
With Eq. (2.5), these relations may be rearranged for later use as

01(0) + (@] 0) + (1) — Do) — (50) — Fal0) = 2Bt + Iy 1€ L (6.1)

i (2100(0) = 10 = 9, 0)) — w1 (Za®2(0) = 1@50) = Vo)) = i Baa — Dt — i ot (62)

Substituting the expansion (2.8), (2.9) into Eqgs. (6.1) and (6.2) leads, in one way or another, to an infinite
system of linear algebraic equations for the unknowns ay, b, k = 0,+1,12,.... Of course, in practice this
infinite system is truncated and replaced by a finite linear system which includes only the first N unknowns,
for a certain finite N. One of the difficulties in solving the direct elasticity problem (6.1) and (6.2) is that the
truncated system may be ill-conditioned. In this case GAs become poorly unstable and the searching
trajectory starts to move away from a feasible optimum.



S. Vigdergauz | International Journal of Solids and Structures 38 (2001) 6851-6867 6861

The geometrical limitations outlined in the previous section serve not only to save computational efforts
but also to exclude the “stubborn” structures whose quantitative assessment is problematic by the above
reason.

The situation can be further improved by properly manipulating the problem equations, because, at a
given contour L, computational properties of the system partially depend on how it has been analytically
derived from Egs. (6.1) and (6.2). Despite a variety of numerical schemes, it is not easy to find an accurate
method yet matching the stringent GA requirements on the memory, speed and computational stability.
Therefore, our main concern is to simplify the system structure as much as possible. This may be achieved
through the same identities (6.1) and (6.2) which give no way of separating the coefficients sought a_;, b_;.
When properly used, they admit of solving the pairs of the KM potentials ¢,(z), ¢,(z) and ¥,(z), ¥, (z)
individually, with the latter obtained by straightforward integration. The idea goes back to Sherman (see
Muskhelishvili, 1975) who derived a regular integral equation in only one complex-valued function ¢,(#) on
L. After solving the equation, the second potential y,(z) is given by the Cauchy integral of the expression
¢,(t) — 194 (¢) over L especially tailored to satisfy traction-free boundary conditions. Therefore, the Sher-
man equation is applicable only for a plate with holes. When elastic inclusions are taken instead, its
counterpart, though singular, has recently been obtained by Greengard and Helsing (1998). Interestingly
the singular term vanishes when both phases have the same bulk modulus. Both equations were used in
practice to solve the direct problem of elasticity (Vigdergauz, 1974; Greengard and Helsing, 1998). Here this
approach is modifies in the following way.

First, let us rearrange the Egs. (6.1) and (6.2) separating out the functions v, (¢), ¥»(¢)

(1 — )i () = (A2 + 1) @a(t) — (g + pa/2) @y (1) + (o — 1)t () + 1y (2 + 1)Bat; t€ L (6.3)

(= 1) Pa(t) = (1o + 1 22) Pa(t) + (1o — )15 (1) — o (A1 + 1)@y (8) + [y (22 — 1) + 2p1,] Bot

+ (o — )ty 1y # 1 (6.4)
Next, we consider the following Cauchy integral
/ @40 ses, (6.5)
L t—z

that holds for any function w(z) holomorphic in S;.
Expanding the Cauchy kernel into a convergent power series in ¢

tiz: (1 1—;) :§Z<£)J3

=0

t

z

<l; zesS (6.6)

we substitute Eq. (6.6) in Eq. (6.5) to obtain

/wl(t)t/dt: 0; j=0,1,... (6.7)
L

In a like manner, the following identities may be derived for an arbitrary function w,(z) holomorphic in S,
and vanishing at infinity

/wz(t)f"*ldt =0; j=0,1,... (6.8)
L

Finally, we multiply both sides of Egs. (6.3) and (6.4) by ¢, n=0,1,2,..., and n = —1,-2,..., re-
spectively. Using the expansions (2.9) we write the integrals (6.7) and (6.8) term by term to obtain the
system of a halved size involving only the coefficients a;, k = 0,+1,+.. ..
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Zc,l_;;‘a,k +> CHla=D"; j=0,12,...
k=0

% (6.9)
S+ 3 clo -
k=0
where the matrix entries and the right-hand side take the unified form
Coi'=0; Gl =mlUa+ gy k=1
C] : = (1 + ma2)Jij + (o — )k 1 ks s
Ci; = (i 2+ (i — )R i (6.10)
C/i} = — (A + 1) Tk
DEI) =~ (/12 + I)BZJI,.I‘Q Dj‘Z) =—( (12 - 1) + Zﬂz)BZJI,—./—l + (Hz - ,u1)F2J0,—f—1
Here J;; stands for the regular integral over L
Jki,-:/t_ktjdt; k,j=0,+1,+2 ...; k#] (6.11)
L

These integrals are evaluated numerically, except in a few special cases
J(),,l = ZTEi; J()J = 07 j # —1; Jl,() = Zicl

as given by Eq. (2.11).
Once a;, k = 0,%1, 4. .. are found, we substitute them back to Eq. (6.4) and integrate over L to obtain
the coefficient »_; also involved in the criterion (2.13) for B, # 0

(,ul - luz)/ 'Ilz(t) dt = 2Tl',ib_1
L
= (th + 1 42 Za k/t kdt + (1 — 1y Zka k/tt’k’ldt—Zi,uz()q + 1)
L

— (4 +1) Zak / thde + 2i[uy (A2 — 1) + 2] Bocr; 1y # 1y (6.12)

This completes the solution of the direct problems (6.1), (6.2).

Further computational savings may be achieved by letting the contour L be symmetric about the x- and
y-axes of the coordinate system and centered at its origin. Then, due to the rotational properties of the KM
potentials (Muskhelishvili, 1975), the coefficients (2.10) having odd indices are real while the rest vanish.
The system (6.9) is likewise real with the integrals (6.11) taken only along the one fourth of the contour.

Clearly the KM potentials ¢,(z), ¥,(z) vanish identically in .S for holes or rigid inclusions. Hence the
relations (6.1) and (6.2) reduced to the form

V2(2) = 220, (2) — 199 (2)

where we should formally put 2, = —1 for holes (the Dundurs correspondence, Jasiuk, 1995). The resultant
algebraic system of linear equations in a;, k = —1,—2,... is not written here to save room.
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7. Numeric results

It is commonly known that good use of GA can be made only with the proper choice of heuristic pa-
rameters involved such as the population size, mutation rate and some others. Literature reports various
and discrepant data. Because of this, we first calibrate the approach by numerically reproducing the op-
timality relation (3.10) of the equi-stressness for ellipses. On putting o> = 1 in Egs. (2.5) and (3.6), this
identity becomes especially simple when g, = 0 (elliptical holes)

a™ =0, 2np™ =14 ¢; a9 =14¢q; "9 =0; relL (7.1)

rr

or p; =: (elliptical rigid inclusions)

Y =0y AnpUEY = —(hh — 1)(1 +q);

iy 7.2

4658 (1) = 3= )1+ q); 4055 (1) = (1 + 1)1 + q); tel (7-2)
In accordance with (3.12) the above relations are valid in the interval 0 < ¢ < 1. To make the results more
observable we display only the average stress (agy) taken over the nodes along the equi-stress boundary.
For a circle (¢ = 0) the mean value (r) of all r,,, m =1,2,3,... M is also computed to evaluate the out-
of-roundness. Since rp = 1 the exact value of (r) is unity too.

Table 1 shows the stable values of the above parameters obtained by averaging over 10 independent
optimizations, each including up to 300 iterations. Due to the problem rotational symmetry, the control
points are located only in the portion of the curve L bounded by the angle 0 < 0 < n/4. Apart from the
coefficient oc(flf 9 all the parameters are normalized by their exact non-zero values though we use the same
notations for convenience. Table 2 lists their standard deviations computed at M =30 and N = 14. A
typical convergence characteristic for the GA scheme is shown in Fig. 3. Considering the complexity of the
problem, convergence was obtained in remarkably small number of iterations.

Table 3 presents the set of numerical data, which simulates the identities (7.2) for a rigid ellipse of
eccentricity . = ¢ over the interval of loads 0 > ¢ > 0.4. As against the previous case, the number M of
the control points is doubled here to space them in the angle 0 < 6 < n/2 with the same step. It is worth
noting that the energy-related parameters are approximated substantially better than the stresses and
contour geometry. Our experience suggests that a higher accuracy is arrived at by refining the contour

Table 1
Normalized constants aﬁ‘f ) nﬁﬁhl" ) {640) and (r) versus the number M of control variables and the system size N
Parameter M =15 M =30 M =45
AW 1.0000777 1.0000430 1.0000956 N=7
") 5 104 3.0566734 2.9844509 2.6604456
g 0.9989623 0.9986322 0.9985533
(000 1.0034427 1.0027765 1.0035898
) 0.9989700 0.9986073 0.9985399
AW 1.000006 1.0000000 1.0000011 N=14
el s 10 4.0677631 3.7719578 3.6323497
g 0.9999800 0.9999755 0.9999664
(o00) 1.0009566 1.0000767 1.0000944
) 0.9999950 0.9999761 0.9999824
AW 1.0000000 1.0000000 1.0000000 N =21
a1t s 106 4.5460993 4.4872343 4.2672398
g 1.0000010 1.0000009 1.0000000
(o00) 0.9998566 1.0000569 1.0000867

(r) 1.0000007 1.0000011 1.0000006
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Table 2
Standard deviations of the optimum-related parameters taken for M = 30 and N = 14 over 10 optimizations
Parameter Standard deviation
AW 2.1320 x 107¢
ghete) 4.8446 x 1075
g 6.4959 x 10~
(000) 5.3330 x 1073
() 1.5569 x 1073

w

1.20

1.1 I\

1.04

.
N
1.00 4 -
0 20 40 60 80 100 120 140 160 180 200
I

Fig. 3. The optimization history of the normalized energy F from Eq. (5.1) and the hole shape evolution for pure shear loading against
the number of iterations: / = 10 (a), 50(b), 100(c), 150(d).

Table 3

Normalized constants AW, oz(filgid), Tr[i(filgid) and the ellipse axes ratio R, versus the loading parameter ¢g. The number of control points M

and the system size N are taken as 60 and 14 correspondingly”

Constant qg=1.0 q=0.8 q=0.6 q=04
AW 1.00000 1.00000 1.00000 1.00006
o™ 104 4.03298 4.78450 5.73987 7.90563
g0 1.00000 1.00004 1.00010 1.00048
) 1.00407 1.00662 1.02080 1.04043
R. 1.00282 1.00907 1.01210 1.02065

*Theoretically, R = (1 — d)/(1 + J) = g as dictated by Eq. (3.8).
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Table 4
The GA parameter values used in further optimizations

GA parameter

Parameter value(s)

Gene Integer number [0; 255]

Individual Interface shape

Population size 1000

Number of genes 91

Initial population 1000 arbitrarily generated individuals
Selection Ranking

Elitism Four best individuals

Crossover 1-point

Crossover rate 0.90

Creep mutation By randomly changing a bit

Creep mutation rate 0.35

Jump mutation By adding a random integer value typically [—4; 4]
Jump mutation rate 0.35

discretization. In addition, increasing the computational size of the direct problem may also improve the
stress values once the optimal shape is identified.

In our opinion, these results are an important test of the optimization technique: they reliably reproduce
all of the known low-energy structures. They are used as a benchmark to choose the GA parameter values
summarized in Table 4. Here and henceforth, the stopping criterion for all set of runs was fixed at 400
iterations.

We next identify the high-energy structures for ¢ = 1 (hydrostatic loading) and for ¢ = —1 (pure shear).
Both contours were found to be a true square (at ¢ = —1 rotated through 90°) which is not displayed here
to save room. A number of the related data are collected in Table 5. It should be noted that the energy
increment values F defined by Eq. (5.1) are obtained by Jasiuk (1995) in all cases by solving the direct rather
than the optimal elasticity problem. The computed minimum of F at ¢ = —1 and its counterpart from
Vigdergauz and Cherkaev (1986) and from Cherkaev et al. (1998) are also added for reference.

All these pairs of extrema are rather close to each other. This is because only convex curves with four-
fold rotational symmetry were taken to compute the maximum values. In response, the GA arrives at
straight-line segments that close the admissible contour set. As mentioned in the end of Section 3, strictly
concave contours may store an arbitrarily large strain energy in re-entrant corners.

Finally, the optimal hole shapes have been identified for asymmetric shear loading when 0 > ¢ > — 1.
As expected, they look like rectangles with the slightly rounded sides whose ratio specifically depends on g¢.
Fig. 4 exhibits the associated energy increment F versus the parameter ¢g. The bounds (3.14) and (3.15) are
also given for comparison.

8. Closure and future applications

When applied to the full-scale shape optimization problems in elasticity the GA exhibits the low com-
putational efficiency due to the high-order governing equations. The main goal of this work was to try a
solution strategy consisting of a new effective numerical code of fitness computation and simple modifi-
cations in the encoding procedure freshly combined with the basic structure of the GA. This approach was
used to effectively solve the 2D optimization problem for elastic plates with a dilute concentration of holes
or rigid inclusions.

In order to make the GAs more competitive with traditional optimization tools, further research must be
conducted to check their efficiency. In doing so, it is important to precede the GA computations by a
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Table 5
The computed extrema of the energy increment AW in comparison with the literature values®
Hydrostatic loading (¢ = 1) Pure shear (¢ = —1)
Hole Rigid inclusion Hole Rigid inclusion
Min Max Min Max Min Max Min Max
1.0000 1.1935 —2.0000 —2.2693 1.8541 2.6597 —1.1041 —0.9455
Cherkaev et al. (1998) 1.0000 —2.0000 1.8573
Jasiuk (1995) 1.0000 1.1818 —2.0000 —2.2554 1.8702 2.6182 —1.1422 —0.9725

#For rigid inclusions (4, = oo) we put the Poisson ratio of the plate v, = 0.3.
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Fig. 4. The energy increment for the optimal hole under shear-type loading (1) bounded by the estimates (3.14) and (3.15) (the curves 2
and 3, correspondingly).

comprehensive theoretical analysis. The conducted study demonstrates that a combination of analytical
and numerical methods of investigating optimization problems allows for the effective use of the best
features of both approaches. It would be thus interesting to apply this dual approach to study regular
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composites with non-generated foreign inclusions that exhibit optimal response on the shear loading.
Theoretically, the situation here is the same as in the case of one inclusion approximation: equi-stress
interfaces were identified analytically as a global minimum if the average field is rather isotropic (see
Vigdergauz, 1999 and references therein), otherwise no results are obtained so far. We currently adapt the
genetic algorithm to tackle this doubly periodic problem.
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